D. T. Read

Materials Reliability Division

National Institute of Standards and Technology
Boulder, CO 80305, USA

http://www.boulder.nist.gov/div853/DTR/DTR.htm

Outline, 1/2

I will describe numerical experiments, based on SEM observations, that may point toward a mechanism for this modulus deficit.

Introduction -- Experiments
SEM observations
Numerical models
Results

Discussion -- What's the mechanism?

Conclusions – Trends of numerical results are in the right direction, and appear large enough to explain the effect – mechanism appears to be "load shedding"

Outline, 2/2

Acknowledgments:

- NIST for funding, including Office of Microelectronics Programs
- Colleagues Roy Geiss for SEM, and Yi-Wen Cheng and Joyce Wright for mechanical testing
- Prof. Jon Rifkin of U. of Connecticut for MD code XMD

Introduction, 1/2

Microtensile tests of metal thin films (0.5 to 10 µm thick, physical vapor deposited, sputtered, or electrodeposited) generally produce low values of Young's modulus (10 s of percent), relative to the bulk polycrystalline average of reference values. (ref Huang and Spaepen, *Acta Met.* 48, 2000, 3261-3269, my previous results, etc.)

■ Microtensile tests done by the same techniques, for some other materials, give the "expected" value: epitaxial Si, CVD Poly Si

Introduction, 2/2

- A variety of mechanisms for the modulus deficit are suspected, under the general heading of anelasticity.
- Important to understand because:
 the modulus value is basic to mechanical design;
 getting the modulus right is basic to mechanical testing.
- Measurements of the elastic properties of thin films have an "interesting" history---these are difficult measurements.

High-resolution SEM of electrodeposited copper

Micrograph at 1 M X clearly shows loosely aggregated spheroids, diameter approximately 30-50 nm, with possible substructure

Modulus Deficit in Thin Film Copper Electrodeposits: Experiments and Modeling Results after $9x10^{-12}$ s (9 picoseconds):

Numerical models: Chains of spheres

3 types:

<100>

<110>

<111>

Along tensile axis

Various twist angles

Around 2000 atoms per sphere, at 300 K

Many-body EAM potential after Mei and Fernando (*Phys Rev B* **43**, 1991, 4653-4658)

Periodic Boundary Condition (PBC) model

FCC array of spherical clusters of atoms

Self-assembled at 300 K

Colored: High FCC symmetry

Black: Low FCC symmetry

Modulus Deficit in Thin Film Copper Electrodeposits: Experiments and Modeling Radial distribution functions (RDF) for various models

Perfect

Melt temp. + 1000 K

Solidified block

Chain of spheres

Stress = F/A, av Strain = dL/L

